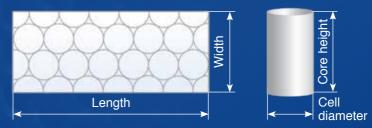
Extremely light. **Extremely strong**.

TUBUS WABEN

Designs of Tubus honeycomb

Tubus honeycomb PP with open cells

Tubus honeycomb PP laminated Polyester fleece on both sides


Tubus honeycomb PP laminated Polypropylene film on both sides Polyester fleece on both sides

Structure of Tubus honeycomb

Contents of this brochure

Tubus honeycombs are innovative cores for extremely light and highly stable lightweight products. They fulfil the highest requirements for precision and long life. Below we provide our recommendations for the optimal processing and handling of Tubus honeycombs.

4	Welding cover layers and honeycomb mat
6	Gluing cover layers and honeycomb mat
8	Laminating cover layers to the honeycomb mat
10	Cold and hot shaping of Tubus honeycombs
12	Fixing options in the honeycomb / on the honeycomb / in the cover layer
14	Design force guidance for Tubus honeycombs
15	Mechanical strengths for sandwich constructions and plates

Welding cover layers and honeycomb mat

TUBUS WABEN with open cells

Welding cover layers and honeycomb mat

Tubus honeycombs can be welded using heat and pressure in a continuous or discontinuous process. This is possible with or without additional materials. The materials to be welded are heated above their melting temperature and made liquid.

As this occurs at various temperatures for different plastics, only plastics of the same kind or with similar melting indices can be welded with each other.

Examples of processes:

- Laminating
- Hot gluing
- Hot pressing

Lightweight element

Cover layers

Ideally fibre-matrix semi-finished products with a thermoplastic matrix are used. Fibre-matrix semi-finished products are understood as materials made from reinforcement fibres that are drenched in a plastic matrix.

Examples for cover layers:

- Textiles based on polyolefins
- Mats based on polyolefins
- Fleeces
- Fabric/cores based on polyolefins
- Hybrid fabrics with a polyolefin element

Ability to deliver

Tubus honeycombs with open cells

Core density		60 - 120 kg/m³
	Length*	1000 - 2900 mm
Dimensions	Width*	850 - 1400 mm
	Core height	5 - 100 mm (every tenth)
Televeneee	Length/width	+/- 4.00 mm
Tolerances	Core height	+/- 0.35 mm

* Other dimensions available on request

Gluing cover layers and honeycomb mat

TUBUS WABEN with polyester fleece

Gluing cover layers and honeycomb mat

The selection of adhesives is made mainly due to the adhesion to the cover layer. The adhesion in the fleece is purely mechanical. Air pockets in the adhesive should be avoided because these massively reduce the stability values and may result in bubbles when heating the honeycomb plate, e.g. sun radiation.

Examples of processes:

- Continuous and discontinuous processes
- Hot, cold and vacuum presses

Examples of adhesives:

- 1-K / 2-K polyurethane adhesive (PUR)
- Hot melt adhesive
- Reactive adhesive

Sandwich panel

Cover layers

When gluing, the cover layers can be selected from thermoplastic, duroplastic or other materials.

Examples for cover layers:

- Fibreglass reinforced plastic (GRP)
- Prepreg
- Fibreglass mats thermoplast (GMT)
- Metal (e.g. aluminium, steel, stainless steel)
- Wood, plywood, HPL, trim, stone,
- Anti-slip surface

Ability to deliver

of Tubus honeycombs with polyester fleece

Core density		60 - 120 kg/m³
Fleece weight		30 - 120 g/m²
	Length*	800 - 3000 mm
Dimensions	Width*	600 - 1500 mm
	Core height	5 - 65 mm (every tenth)
Telerences	Length/width	+/- 4.00 mm
Tolerances	Core height	+/- 0.15 mm

* Other dimensions available on request

Laminating cover layers to the honeycomb mat

TUBUS WABEN with film and fleece

Laminate cover layers on the honeycomb mat

Tubus honeycombs can be processed into sandwich components and pressed parts using various lamination processes. The cover layers are embedded in a resin matrix and connected with the honeycomb mat.

Examples of processes:

- Manual laying process (with vacuum presses)
- Injection fibres
- Vacuum infusion
- Light RTM

Examples of resins:

- Polyurethane resin
- Polyester resin
- Epoxy resin
- Phenol resin

Panel / moulded part

Cover layers

Various materials combinations are possible for the cover laminates and these must harmonise with the honeycomb core. In order to achieve the ideal result, an individual cover layer should be selected for each component.

Examples for cover layers:

- Fibreglass reinforced plastic (GRP)
- Metal (e.g. aluminium, steel, stainless steel)
- Wood, plywood, HPL, trim, stone
- Anti-slip surface

Ability to deliver

Tubus honeycombs with film and fleece

Core density		60 - 120 kg/m³
Film thickness		75 μ m and 140 μ m
Fleece weight		30 - 120 g/m²
	Length*	800 - 3000 mm
Dimensions	Width*	600 - 1500 mm
	Core height	5 - 65 mm (every tenth)
Teleranaca	Length/width	+/- 4.00 mm
Tolerances	Core height	+/- 0.15 mm

* Other dimensions available on request

Cold moulding

Tubus honeycombs with low thicknesses can be cold shaped in large radii at room temperature using pressure or vacuums as can resins or adhesives. For this the sandwich element must be placed and fixed into the shaping tool.

The new shape is retained after hardening the resin or adhesive.

Laminate structure

The laminate layers are attached to the honeycomb mat using resin or adhesive.

Shaping

Shaping the laminated honeycomb mat in a mould with a counter-mould or a mould under a vacuum.

Hardening

After hardening the resin or adhesive, the mould can be removed and further processing can take place.

Warm moulding

Tubus honeycombs consist of a thermoplastic material that can be shaped in a particular temperature range. This process is reversible; i.e. it can be repeated by cooling and re-heating as often as required as long as so-called thermal decomposition is not caused in the material due to overheating.

Heating

The honeycomb mat is heated e.g. using an oven, infra-red radiation or a heated mould.

Shaping

The honeycomb mat receives a new contour in the mould.

Cooling

The honeycomb mat is cooled at room temperature or in a cooled mould.

Fixing options

Fixing in the honeycomb

Plan the honeycomb cutout in the position of the later fixing point.

- Use and adhere inserts, e.g. made of aluminium, plywood, ureol or special sandwich fixing element
- Alternatively fill the hollow space with resin
- Close with the cover layer

Fixing on the honeycomb

Perforate the glass mat in the position of the later fixing point

- Screw special fixer (suitable for laminate) to the glass mat
- Insert the fixer into the laminate

Fixing in the cover layer

Drill cover layer

- E.g. blind rivet, threaded insert, riveting nut or special sandwich fixing element
- Fix inserted element

13

12

Design force guidance

Special attention is required for designing force guides as it must be possible to guide loads directly into the cover layer.

Forces should be guided if possible as a shear load into the sandwich in the plane direction. Where the forces are guided the honeycomb core is filled, e.g. with a resin micro-ball mixture. Depending on the extent of the load the cover layers may need to be reinforced locally with additional cover layers.

When guiding moments or forces vertically to the sandwich level, in most cases an appropriate arrangement of frames, ribs or similar inserts is required.

For impact loads with various load directions, it has also proven to be favourable to replace the honeycomb sandwich where the force is applied with a reinforced cover layer.

Mechanical strengths for sandwich constructions and plates

A generally applicable formula for calculating the mechanical properties of sandwich plates is not possible.

The core material and cover layers are responsible for ensuring the mechanical stability of sandwich constructions, plates and panels. The ratio of the cover layers to the core material must be correct.

The basis for calculation from the literature only applies for defined relationships of total thickness, cover layer thickness, core material and cover layer material in particular ranges.

Technical application instructions and recommendations are neither binding nor guaranteed. They match the current state of our knowledge and do not release the user of Tubus honeycombs from the responsibility of checking that the products are suitable for the proposed use.

TUBUS WABEN GmbH & Co. KG

Industrie- und Gewerbegebiet 11 07426 Königsee-Rottenbach Germany

Telephone:	+49 36739 318-0
Fax:	+49 36739 318-88
Email:	info@tubus-waben.de
Web:	www.tubus-waben.de